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A brief history of channel coding

C.E. Shannon

Definition

1948

R.G. Gallager

LDPC Codes

1960

C. Berrou

Turbo Codes

1993

0.7dB

S.Y. Chung

LDPC Codes
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0.0045dB

E. Arıkan

Polar Codes

2009

0dB

C. Shannon, “A mathematical theory of communication,” Bell System Tech. J., pp. 379-423, July 1948.

R. G. Gallager, Low-Density Parity-Check Codes, Cambridge, MA, MIT Press, 1963.

C. Berrou and A. Glavieux, “Near optimum error correcting coding and decoding: turbo-codes,” IEEE Trans. Communi-
cations, pp. 1261-1271, October 1996.

S.-Y. Chung, J. G. D. Forney, T. Richardson, and R. Urbanke, “On the design of low-density parity-check codes within
0.0045 dB of the Shannon limit,” IEEE Commun. Lett., vol. 5, pp. 58-60, Feb. 2001.

E. Arıkan, “Channel polarization: A method for constructing capacity achieving codes for symmetric binary-input memo-
ryless channels,” IEEE Trans. Inf. Theory, vol. 55, no. 7, pp. 3051-3073, Jul. 2009.
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Background of Neural Network
The Origin of Neural Network

In the human brain, a typical neuron collects signals from others through a host of
fine structures called dendrites.

The neuron sends out spikes of electrical activity through a long, thin stand known
as an axon, which splits into thousands of branches.

At the end of each branch, a structure called a synapse converts the activity from the
axon into electrical effects that inhibit or excite activity in the connected neurons.

The primary appeal of neural networks is their ability to emulate the brains pattern-
recognition skills. The combination of neural network and other techniques, such
as distributed storage, parallel processing and nonlinear mapping can get better
application results.
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Overview of Neural Network

Neural Network Model

Original 

data

Visible layer

Category 1

Category 2

Category 3

OutputMultiple level

1943 the neurophysiologist Warren McCulloch of the University of Illinois and the
mathematician Walter Pitts of the University of Chicago proposed the theoretical
basis of neural networks.

In 1954 Belmont Farley and Wesley Clark of the Massachusetts Institute of Tech-
nology succeeded in running the first simple neural network.

Also in 1982, there was a joint US-Japan conference on Cooperative/Competitive
Neural Networks. Japan announced a new Fifth Generation effort on neural net-
works. As a result, there was more funding and thus more research in the field.
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Neural Network for channel coding

Deep learning setup for channel coding
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At the transmitter, k information bits are encoded into a codeword of length N .

The coded bits are modulated and transmitted over a noisy channel.

At the receiver, a noisy version of the codeword is received and the task of the
NN decoder is to recover the corresponding information bits base on the experience
obtained from training.
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Neural Network for channel coding

Learning to code system model
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Learning to decode usually involves two stages of training and decoding.

First, the neural network decoder is trained so as to learn the information
as much as possible when the input is run through the encoder and then
the channel is transmitted.
In the decoding phase, the neural network decodes the received signal
based on the information and experience obtained during training.
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Viterbi Algorithm Overview

History of Viterbi

∗ Andrew J. Viterbi

∗ Qualcomm Chief Scientist

∗ Father of CDMA

Proposed by Andrew J. Viterbi in 1967

Maximum likelihood decoding for convolutional codes

Dynamic programming algorithm,and is generally described by the hid-
den Markov model (HMM)
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Viterbi Algorithm Overview
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∗ All options for each step save the
minimum total cost (or maximum
value) of all previous steps to the
current step, and the previous steps
for the current cost;

∗ After all the steps are calculated, the
best choice path is found by back-
tracking;

∗ Conform to this model can be solved
by Viterbi Algorithm.
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Neural Network for Viterbi Algorithm

Two basic designs

Register Exchange

∗ A shift register is associated with every state in the decoding trellis
∗ The register for a given state at a given time contains the information

bits associated with the surviving partial path that terminates at that
state

∗ The registers are updated and exchanged as dictated by the surviving
branches

Trace Back

∗ To search forward according to the preferred paths
∗ When exploring a certain state, finding that previous choice is not the

best or fail to reach the target, it is a step back to re-select
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Neural Network for Viterbi Algorithm

Decoder modules:

∗ Input correlation

∗ Surviving path selection

∗ Register exchange

∗ Maximum path metric selection

∗ Output register selection

The block diagram of ANN decoder
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Neural Network for Viterbi Algorithm

Modules can be implemented using threshold-logic and hard-limiter
neurons

∗ Input correlation:Level A

∗ Surviving path selection:
Level B and C

∗ Register exchange:Level D

∗ Maximum path metric selection:
Level E and F

∗ Output register selection:
Level G
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Neural Network for Viterbi Algorithm

Level A

Compute the inner products of received signals

A bias constant is added to ensure the positive branch metric, since TL
neurons have a zero output when the input is negative
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Neural Network for Viterbi Algorithm

Level B

Add the branch metrics computed by level A to the partial path metrics

Generate new path metrics for the next sates

P (1) = b1 + Pi1

P (2) = b2 + Pi2

Pi = max{P (1),P (2)}
= P (1) +max{P (2) − P (1),0}
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Neural Network for Viterbi Algorithm

Level C

Send the surviving paths to the register-exchange module

Each pair of HL neurons is associated with two paths entering a given
trellis state

∗ With the surviving path:output= 0, input to the register exchange
module= 0

∗ Others:output= 1, input to the register exchange module= −2Γ

these values control the register exchange
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Neural Network for Viterbi Algorithm

Level D

Store Γ bits of information in form of an integer in the range [0, 2Γ−1]

These values are changed as dictated by the HL neurons from the
surviving paths

Hard-Limiter
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Neural Network for Viterbi Algorithm

Level E

Two neurons in the left collect the current path metrics for the four
states

Determine the maximum value

Level F

Decoding the HL neurons

Output with the maximum path
metric is 0,else is 1
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Neural Network for Viterbi Algorithm

Level G

Select one of four neuron outputs and add its integer to −2(Γ−1)

The most significant bit of the selected register determine the ANN
decoder output
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Simulation

AWGN channel,rate 1/2,number of neurons= 514[1][W.Xiaoan 1996]

The performance of ANN decoder exactly matches that of Ideal VA.
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Conclusion

Advantages

Using analog, artificial neurons, and the structure does not place any
limit on the speed.
The TL and HL neurons are easily implemented using existing linear
and nonlinear components
The complexity of ANN decoder can be fully determined by the param-
eters of convolutional codes

Distribution of neurons in ANN Viterbi decoder

TL neuron HL neuron

Input correlation

Path metric feedback

Survival path select

MINNET

2n

2M

 2 2 2 2 1M k M k  

 2 2 1M 

 2 2 1M k 

k:input bit n:output bit M:number of memory elements
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Belief Propagation Overview

Robert G. Gallager

American electrical engineer.

a member of the technical staff at the
Bell Telephone Laboratories.

known for his work on information theory
and communications networks.

received the Claude E. Shannon Award
from the IEEE Information Theory Soci-
ety.
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LDPC Encoder Introduction

The LDPC code defined by the graph is the set vectors C=(c1, ...cn)
such that HcT = 0

example:
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Belief Propagation

The Sum-Product algorithm is usually called Belief Propagation when
the messages represent beliefs.

For the BEC, BP boils down to the following very simple rules.

At variable nodes, if all of the messages used for the computation of the
outgoing message are erasures, then the outgoing message is an erasure.
At check nodes, if at least one of the messages used for the computation
of the outgoing message is an erasure, then the outgoing message is an
erasure.
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Application Belief Propagation on LDPC
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BP Algorithm for LDPC Decode Step

BP Algorithm for LDPC Decode

Algorithm 1 The Gallager Belief Propagation Algorithm

Input: initialize Lj and set Lj→i=Lj for which hij=1;
1: CN update: Compute outgoing CN messages Li→j for each CN using:

Li→j = 2tanh−1

( ∏
j′∈N(i)−{j}

tanh
(
1
2
Lj′→i

))
2: VN update: Compute outgoing VN messages Lj → i for each VN using Equation.

Lj→i = Lj +
∑

i′∈N(j)−{i}
Li′→j

3: LLR total:
4: for j = 0 : n− 1 do
5: Ltotal

j = Lj +
∑

i∈N(j)

Li→j

6: v̂j =

{
1, ifLtotal

j < 0

0, else

7: end for
8: if v̂H = 0 or the number of iterations equals the maximum limit,stop else go to Step

2.
9: return v.
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Neural Network Architectures
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Hidden layer




Input layer

tanh

1

1 exp

i ij j iO

j

i ij j iO

j

ij j iO

j

y W x W

y W x W

W x W



 
  

 

 
  

 


  

    
   









0 1x 

0w

1x

2x

3x

nx
0

n

i i

i

net w x



 

1

1 net
o net

e



 



Kai Niu (BUPT) Learning to Decode October 11, 2017 38 / 76



Application Deep Learning to Decode

m check nodes

11w 31w

training 

target

1 2 3 4 5 6 7w w w w w w w     

use the trellis representation for the decoder as in the BP algorithm.
The difference is that assigning weights to the edges in the Tanner
graph.

Hence by optimal setting (training) of the parameters of the neural
network, its performance can not be inferior to plain BP.
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Application Deep Learning to Decode

m check nodes

11w 31w

training 

target

1 2 3 4 5 6 7w w w w w w w     

The goal is to train the param-
eters {wi, wi,j} to achieve an
N dimensional output word.

These weights will be trained using stochastic gradient descent which
is the standard method for training neural networks.

Li→j = 2tanh−1

(
∏

j′∈N(i)−{j}
tanh

(
1
2

(
wiLi +

∑
i′∈N(j)−{i}

wi,jLj′→i

)))
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Application Deep Learning to Decode

input

hidden layer

output

BCH(15,11) with 5 hidden layers which correspond to 3 full BP iterations.
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Deep Learning Training Data

0

0

0

 
 
 
 
 
 

Source Channel Neural Network

Create Dataset

Range from 1dB to 6dB

Training

Training parameters:

the training data are all zero codeword.

SNRs ranging from 1dB to 6dB.

each mini batch has 20 codewords for each SNR.
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Deep Learning Training Data[2][E. Nachmani 2016]

Simulation Parameters:

channel type: AWGN.

type is BCH(63,36).

SNRs ranging from 1dB to 6dB.
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Conclusions

From the simulation results and analysis,it’s obvious that:

improve performance compared to plain BP without increasing the re-
quired computational complexity.
eg:achieve the same BER performance of 50 iteration BP with 5 itera-
tion of the deep neural decoder, This is equal to complexity reduction
of factor 10.

it’s suitable for short BCH codes, for larger BCH codes, the BP al-
gorithm and the deep neural network still have a significant gap from
maximum likelihood.
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Overview of Polar Coding

Polar encoding

Block code.

Both non-systematic and systematic encoding can be implemented.

Construction

BEC channel: Bhattacharyya parameters calculation.

Density evolution (DE) and Tal & Vardy algorithm.

Gaussian approximation.

Decoding

Successive cancellation (SC) decoding: low complexity.

Improved SC decoding: high performance.
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The Basic Idea of Channel Polarization

Transforms N independent copies of a given channel W into a second set
of channels that show a polarization effect.

Wu1 y1

Wu2 y2

Normal Transmission

Wu1 y1

Wu2 y2

x1

x2

Wu1 y1

Wu2 y2

W-

W+



Polarized Transmission

Two copies of a binary input channel W : F2 → Y
Consider the transformation above to generate two channels W− :
F2 → Y2 and W+ : F2 → Y2 × F2

I
(
W−

)
≤ I (W ) ≤ I

(
W+

)
(1)

I
(
W−

)
+ I

(
W+

)
= 2I (W ) (2)
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Channel Polarization Transform

Channel polarization transform
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Channel Polarization Transform

Polarization phenomenon demonstration

∗ BEC channel with erasure
probability 0.5;

∗ The capacities are shown on
the X-axis;

∗ The number of subchannels
in each capacity interval is
represented by the height.
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Generic Encoding Process of Polar Codes

(8, 4) polar code for BEC channel with ε = 0.5
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Encoding complexity: O (N logN).
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Successive Cancellation (SC) Decoding

Trellis representation of polar codes
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mod 2 = 0, and

Li,j = f

(
Li+1,j

2
,
L

i+1,j+2i−1

2

)
(3)

where f (x, y) = 2tanh−1 [tanh (x) · tanh (y)].

∗ In variable nodes,
⌊

j−1

2i−1

⌋
mod 2 = 1, and

Li,j =
(
1− 2s

i,j−2i−1

)
L

i+1,j−2i−1

+ Li+1,j

(4)
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Successive Cancellation (SC) Decoding

Trellis representation of polar codes
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Hard Messages Updated Rule:

∗ When
⌊
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⌋
mod 2 = 0,

Si+1,j = Si,j ⊕ S
i,j+2i−1 (5)

where ⊕ is the modulo-2 operation.

∗ When
⌊

j−1

2i−1

⌋
mod 2 = 1,

Si+1,j = Si,j (6)

Complexity:
∗ Require O (N log2N) processing elements.
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Decoding of Polar Codes

Successive cancellation (SC) decoding: A deep-first search method with
complexity roughly O (N logN).

Sufficient to prove that polar codes achieve capacity.
Equivalent to an earlier algorithm by Schnabl and Bossert (1995) for RM
codes.

List decoding: A breadth-first search algorithm with limiting branch.

First proposed by Tal and Vardy (2011) for polar codes [17, 18].
List decoding was used earlier by Dumer and Shabunov (2006) for RM
codes.
Complexity grows as O (LN logN) for a list size L.

Sphere-decoding (“British Museum” search with branch and bound,
starts decoding from the opposite side) [24][K. Niu].

CRC aided list decoding: CRC helps to select the correct decoding path
from the list, which makes polar codes perform better than LTE turbo
codes with the comparable complexity [20, 21, 22][K. Niu].
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Basic Deep Learning for Polar coding

Deep learning setup for channel coding

se
le

ct
in

g
  

th
e 

in
fo

rm
at

io
n
 s

et
 

se
le

ct
in

g
  

th
e 

in
fo

rm
at

io
n
 s

et
 

k
 i

n
fo

rm
at

io
n

 b
it

s

0b

1b

1kb 

2kb 

…

1b

…

1u

2u

/2 1Nu 

/2Nu

..
.

/2 1Nu 

/2 2Nu 

..
.

1Nu 

Nu

          

          

          

          

 

 

 

 

1v

2v

/2 1Nv 

/2Nv

/2 1Nv 

/2 2Nv 

1Nv 

Nv

..
.

..
.

/2NW

/2NW

...

...

...

...

...

...

W

W

W

W

W

W

Abstract

channel

Training nueral

 network
NN Decoder

k
 e

st
im

at
ed

 b
it

s

0b̂

ˆ
kb

1b̂

1
ˆ
kb 

A NN consists of many connected neurons. In such a neuron all of its weighted
inputs are added up, a bias is optionally added, and the result is propagated through
a nonlinear activation function, e.g., a sigmoid function or a rectified linear unit
(ReLU), which are respectively defined as:

gsigmoid(Z) =
1

1 + e−Z
, grelu(Z) = max{0,Z} (7)
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Basic Deep Learning for Polar coding

Deep learning setup for channel coding
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Denoting v as input and w as output of the NN, an input-output
mapping is defined by a chain of functions depending on the set of
parameters θ by

w = f(v; θ) = f (L−1)(f (L−2)(· · · (f (0)(v))) (8)

where L gives the number of layers and is also called depth.
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Deep Learning for Polar coding

Nueral network training of polar
codes
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Generate

 codewords

Training set

A training set of known input-
output mappings is required
and a specific loss function has
to be defined so as to find the
weights of NN.

Weights of the NN can be
found to minimize the loss func-
tion over the training set,by
the use of gradient descent
optimization methods and the
backpropagation algorithm

The goal of the training is to
enable NN to find the correct
output for the unknown input.
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Deep Learning for Polar decoding

Generate training data for polar

Input k bits Polar 

Encoder 

n

Noisy 

codewords

As is show in the above fig, k information bits are encoded into a
codeword of length N. Then the coded bits are transmitted through
the noise channel, and the original code bits are added with noise.

the desired NN output is easy to obtained when noisy codewords are
generated and the transmitted information bits are obviously known.

There are as many known input-output mapping as NN required cor-
responding each k information bits for the noisy is easy to generate for
free.
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Deep Learning for Polar decoding

Polar code training process

It is possible to extend the NN with additional layers for modulating
and adding noise so as to keep the training set small.

Sigmoid function(7)forces the output neurons to be in between zero
and one, which can be interpreted as the probability that a ”1” was
transmitted.

A loss function is a function that maps an event onto a real number in-
tuitively representing some ”cost” associated with the event. Examples
for such loss functions:

LMSE=
1

k

∑
i

(bi − b̂i)
2

(9)

LBCE = − 1

k

∑
i

[bi ln(b̂i) + (1− bi) ln(1− b̂i)] (10)

where bi ∈ {0, 1}is the ith target information bit (label) and b̂i ∈ [0, 1]
the NN soft estimate.
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Influence of the number of epochs Mep on the BER

Polar Code[3][T. Gruber 2017]

Since the performance of NND depends not only on the
SNR of the validation data set (for which the bit error rate
(BER) is computed) but also on the SNR of the training
data set6, we define below a new performance metric, the
normalized validation error (NVE). Denote by ρt and ρv the
SNR (measured as Eb/N0) of the training and validation
data sets, respectively, and let BERNND(ρt, ρv) be the BER
achived by a NN trained at ρt on data with ρv. Similarly, let
BERMAP(ρv) be the BER of MAP decoding at SNR ρv. For a
set of S different validation data sets with SNRs ρv,1, . . . , ρv,S ,
the NVE is defined as

NVE(ρt) =
1

S

S∑

s=1

BERNND(ρt, ρv,s)

BERMAP(ρv,s)
. (7)

The NVE measures how good a NND, trained at a particular
SNR, is compared to MAP decoding over a range of different
SNRs. Obviously, for NVE = 1, the NN achieves MAP per-
formance, but is generally greater. In the sequel, we compute
the NVE over S = 20 different SNR points from 0 dB to 5 dB
with a validation set size of 20000 examples for each SNR.

We train our NN decoder in so-called “epochs”. In each
epoch, the gradient of the loss function is calculated over the
entire training set X using Adam’, a method for stochastic
gradient descent optimization [22]. Since the noise layer in
our architecture generates a new noise realization each time it
is used, the NN decoder will never see the same input twice.
For this reason, although the training set has a limited size
of 2k codewords, we can train on an essentially unlimited
training set by simply increasing the number of epochs Mep.
However, this makes it impossible to distinguish whether the
NN is improved by a larger amount of training samples or
more optimization iterations.

Starting with a NN decoder architecture of 128-64-32 and
Mep = 222 learning epochs, we train the NN with datasets
of different training SNRs and evaluate the resulting NVE.
The result is shown in Fig. 2, from which it can be seen that
there is an “optimal” training Eb/N0. An explanation for the
occurrence of an optimum can be explained by the two cases:

1) Eb/N0 →∞; train without noise, the NN is not trained
to handle noise.

2) Eb/N0 → 0; train only with noise, the NN can not learn
the code structure.

This clearly indicates an optimum somewhere in between these
two cases. From now on, a training Eb/N0 of 1 dB and 4 dB
is chosen for polar and random codes, respectively.

Fig. 3 shows the BER achieved by a very small NN
of dimensions 128-64-32 as a function of the number of
training epochs ranging from Mep = 210, . . . , 218. For BER
simulations, we use 1 million codewords per SNR point. For
both code families, the larger the number of training epochs,
the closer is the gap between MAP and NND performance.

6It would also be possible to have a training data set which contains a
mix of different SNR values, but we have not investigated this option here.
Recently, the authors in [21] observed that starting at a high training SNR
and then gradually reducing the SNR works well.
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Fig. 3: Influence of the number of epochs Mep on the BER of a
128-64-32 NN for 16 bit-length codes with code rate r = 0.5.

However, for polar codes, close to MAP performance is
already achieved for Mep = 218 epochs, while we may need
a larger NN or more training epochs for random codes.

In Fig. 4, we illustrate the influence of direct channel values
versus channel LLR values as decoder input in combination
with two loss functions, MSE and BCE. The NVE for all
combinations is plotted as a function of the number of training
epochs. Such a curve is also called “learning curve” since
it shows the process of learning. Although it is ususally
recommended to normalize the NN inputs to have zero mean
and unit variance, we train the NN without any normalization
which seems to be sufficient for our setup. For a few training
epochs, the LLR input improves the learning process; however,
this advantage disappears for a larger Mep. The same holds
for BCE against MSE. For polar codes with LLR values and
BCE the learning appears not to converge for the applied
number of epochs. In summary, for training the NN with a
large number of training epochs it does not matter if LLR or
channel values are used as inputs and which loss function is
employed. Moreover, normalization is not required.

In order to answer the question how large the NN should
be, we trained NNs with different sizes and structures. From
Fig. 5, we can conclude that, for both polar and random codes,
it is possible to achieve MAP performance. Moreover, and
somewhat surprisingly, the larger the net, the less training

Random Code[3][T. Gruber 2017]

Since the performance of NND depends not only on the
SNR of the validation data set (for which the bit error rate
(BER) is computed) but also on the SNR of the training
data set6, we define below a new performance metric, the
normalized validation error (NVE). Denote by ρt and ρv the
SNR (measured as Eb/N0) of the training and validation
data sets, respectively, and let BERNND(ρt, ρv) be the BER
achived by a NN trained at ρt on data with ρv. Similarly, let
BERMAP(ρv) be the BER of MAP decoding at SNR ρv. For a
set of S different validation data sets with SNRs ρv,1, . . . , ρv,S ,
the NVE is defined as

NVE(ρt) =
1

S

S∑

s=1

BERNND(ρt, ρv,s)

BERMAP(ρv,s)
. (7)

The NVE measures how good a NND, trained at a particular
SNR, is compared to MAP decoding over a range of different
SNRs. Obviously, for NVE = 1, the NN achieves MAP per-
formance, but is generally greater. In the sequel, we compute
the NVE over S = 20 different SNR points from 0 dB to 5 dB
with a validation set size of 20000 examples for each SNR.

We train our NN decoder in so-called “epochs”. In each
epoch, the gradient of the loss function is calculated over the
entire training set X using Adam’, a method for stochastic
gradient descent optimization [22]. Since the noise layer in
our architecture generates a new noise realization each time it
is used, the NN decoder will never see the same input twice.
For this reason, although the training set has a limited size
of 2k codewords, we can train on an essentially unlimited
training set by simply increasing the number of epochs Mep.
However, this makes it impossible to distinguish whether the
NN is improved by a larger amount of training samples or
more optimization iterations.

Starting with a NN decoder architecture of 128-64-32 and
Mep = 222 learning epochs, we train the NN with datasets
of different training SNRs and evaluate the resulting NVE.
The result is shown in Fig. 2, from which it can be seen that
there is an “optimal” training Eb/N0. An explanation for the
occurrence of an optimum can be explained by the two cases:

1) Eb/N0 →∞; train without noise, the NN is not trained
to handle noise.

2) Eb/N0 → 0; train only with noise, the NN can not learn
the code structure.

This clearly indicates an optimum somewhere in between these
two cases. From now on, a training Eb/N0 of 1 dB and 4 dB
is chosen for polar and random codes, respectively.

Fig. 3 shows the BER achieved by a very small NN
of dimensions 128-64-32 as a function of the number of
training epochs ranging from Mep = 210, . . . , 218. For BER
simulations, we use 1 million codewords per SNR point. For
both code families, the larger the number of training epochs,
the closer is the gap between MAP and NND performance.

6It would also be possible to have a training data set which contains a
mix of different SNR values, but we have not investigated this option here.
Recently, the authors in [21] observed that starting at a high training SNR
and then gradually reducing the SNR works well.
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Fig. 3: Influence of the number of epochs Mep on the BER of a
128-64-32 NN for 16 bit-length codes with code rate r = 0.5.

However, for polar codes, close to MAP performance is
already achieved for Mep = 218 epochs, while we may need
a larger NN or more training epochs for random codes.

In Fig. 4, we illustrate the influence of direct channel values
versus channel LLR values as decoder input in combination
with two loss functions, MSE and BCE. The NVE for all
combinations is plotted as a function of the number of training
epochs. Such a curve is also called “learning curve” since
it shows the process of learning. Although it is ususally
recommended to normalize the NN inputs to have zero mean
and unit variance, we train the NN without any normalization
which seems to be sufficient for our setup. For a few training
epochs, the LLR input improves the learning process; however,
this advantage disappears for a larger Mep. The same holds
for BCE against MSE. For polar codes with LLR values and
BCE the learning appears not to converge for the applied
number of epochs. In summary, for training the NN with a
large number of training epochs it does not matter if LLR or
channel values are used as inputs and which loss function is
employed. Moreover, normalization is not required.

In order to answer the question how large the NN should
be, we trained NNs with different sizes and structures. From
Fig. 5, we can conclude that, for both polar and random codes,
it is possible to achieve MAP performance. Moreover, and
somewhat surprisingly, the larger the net, the less training

NN decoder employing three hidden layers with 128, 64, and 32 nodes.

For both code families, the larger the number of training epochs, the closer is the gap
between MAP and NND performance.

For polar codes, close to MAP performance is achieved for Mep = 218 epochs, while we
may need a larger NN or more training epochs for random codes.
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Comprehensive Comparison of Learning to Decode

Learning curve for 16 bit-
length codes with code rate r
= 0:5 for a 128-64-32 NN.[3][T.
Gruber 2017]
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Fig. 4: Learning curve for 16 bit-length codes with code rate
r = 0.5 for a 128-64-32 NN.
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Fig. 5: Learning curve for different NN sizes for 16 bit-length
codes with code rate r = 0.5.

epochs are necessary. In general, the larger the number of
layers and neurons, the larger is the expressive power or
capacity of the NN [16]. Contrary to what is common in
classic machine learning tasks, increasing the network size
does not lead to overfitting since the network never sees the
same input twice.

B. Scalability

Up to now, we have only considered 16 bit-length codes
which are of little practical importance. Therefore, the scal-
ability of the NN decoder is investigated in Fig. 6. One can
see that the length N is not crucial to learn a code by deep
learning techniques. What matters, however, is the number
of information bits k that determines the number of different
classes (2k) which the NN has to distinguish. For this reason,
the NVE increases exponentially for larger values of k for a
NN of fixed size and fixed number of training epochs. If a NN
decoder is supposed to scale, it must be able to generalize from
a few training examples. In other words, rather than learning
to classify 2k different codewords, the NN decoder should
learn a decoding algorithm which provides the correct output
for any possible codeword. In the next section, we investigate
whether structure allows for some form of generalization.
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Random Code

Fig. 6: Scalability shown by NVE for a 1024-512-256 NN
for 16/32/64 bit-length codes with different code rates and
Mep = 216 training epochs.

IV. CAPABILITY OF GENERALIZATION

As Fig. 2–6 show, NNDs for polar codes always perform
better than random codes for a fixed NN design and number of
training epochs. This provides a first indication that structured
codes, such as polar codes, are easier to learn than random
codes. In order to confirm this hypothesis, we train the NN
based on a subset Xp which covers only p % of the entire set
of valid codewords. Then, the NN decoder is evaluated with
the set Xp that covers the remaining 100 − p% of X . As a
benchmark, we evaluate the NN decoder also for the set of
all codewords X . Instead of BER as in Fig. 3, we now use
the block error rate (BLER) for evaluation (see Fig. 7). This
way, we only consider whether an entire codeword is correctly
detected or not, exluding side-effects of similarities between
codewords which might lead to partially correct decoding.
While for polar codes the NN is able to decode codewords
that were not seen during training, the NN cannot decode
any unseen codeword for random codes. Fig. 8 emphasizes
this observation by showing the single-word BLER for the
codewords xi ∈ X80 which were not used for training.
Obviously, the NN fails for almost every unseen random
codeword which is plausible. But for a structured code, such
as a polar codes, the NN is able to generalize even for unseen
codewords. Unfortunately, the NN architecture considered here
is not able to achieve MAP performance if it is not trained on
the entire codebook. However, finding a network architecture
that generalizes best is topic of our current investigations.

In summary, we can distinguish two forms of generalization.
First, as described in Section III, the NN can generalize from
input channel values with a certain training SNR to input
channel values with arbitrary SNR. Second, the NN is able to
generalize from a subset Xp of codewords to an unseen subset
Xp. However, we observed that for larger NNs the capability
of the second form of generalization vanishes.

V. OUTLOOK AND CONCLUSION

For small block lengths, we achieved to decode random
codes as well as polar codes with MAP performance. But
learning is limited through exponential complexity as the
number of information bits in the codewords increases. The

The influence of direct channel val-
ues versus channel LLR values as de-
coder input in combination with two
loss functions, MSE and BCE.

For a few training epochs, the LLR
input improves the learning process.
This advantage disappears for a larger
Mep.The same holds for BCE against
MSE.
For polar codes with LLR values and
BCE the learning appears not to
converge for the applied number of
epochs.

In summary, for training the NN with a large number of training epochs it does
not matter if LLR or channel values are used as inputs and which loss function is
employed. Moreover, normalization is not required.
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Comprehensive Comparison of Learning to Decode

Learning curve for different NN
sizes for 16 bit-length codes with
code rate r = 0:5.[3][T. Gruber 2017]
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Fig. 4: Learning curve for 16 bit-length codes with code rate
r = 0.5 for a 128-64-32 NN.
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Fig. 5: Learning curve for different NN sizes for 16 bit-length
codes with code rate r = 0.5.

epochs are necessary. In general, the larger the number of
layers and neurons, the larger is the expressive power or
capacity of the NN [16]. Contrary to what is common in
classic machine learning tasks, increasing the network size
does not lead to overfitting since the network never sees the
same input twice.

B. Scalability

Up to now, we have only considered 16 bit-length codes
which are of little practical importance. Therefore, the scal-
ability of the NN decoder is investigated in Fig. 6. One can
see that the length N is not crucial to learn a code by deep
learning techniques. What matters, however, is the number
of information bits k that determines the number of different
classes (2k) which the NN has to distinguish. For this reason,
the NVE increases exponentially for larger values of k for a
NN of fixed size and fixed number of training epochs. If a NN
decoder is supposed to scale, it must be able to generalize from
a few training examples. In other words, rather than learning
to classify 2k different codewords, the NN decoder should
learn a decoding algorithm which provides the correct output
for any possible codeword. In the next section, we investigate
whether structure allows for some form of generalization.
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Fig. 6: Scalability shown by NVE for a 1024-512-256 NN
for 16/32/64 bit-length codes with different code rates and
Mep = 216 training epochs.

IV. CAPABILITY OF GENERALIZATION

As Fig. 2–6 show, NNDs for polar codes always perform
better than random codes for a fixed NN design and number of
training epochs. This provides a first indication that structured
codes, such as polar codes, are easier to learn than random
codes. In order to confirm this hypothesis, we train the NN
based on a subset Xp which covers only p % of the entire set
of valid codewords. Then, the NN decoder is evaluated with
the set Xp that covers the remaining 100 − p% of X . As a
benchmark, we evaluate the NN decoder also for the set of
all codewords X . Instead of BER as in Fig. 3, we now use
the block error rate (BLER) for evaluation (see Fig. 7). This
way, we only consider whether an entire codeword is correctly
detected or not, exluding side-effects of similarities between
codewords which might lead to partially correct decoding.
While for polar codes the NN is able to decode codewords
that were not seen during training, the NN cannot decode
any unseen codeword for random codes. Fig. 8 emphasizes
this observation by showing the single-word BLER for the
codewords xi ∈ X80 which were not used for training.
Obviously, the NN fails for almost every unseen random
codeword which is plausible. But for a structured code, such
as a polar codes, the NN is able to generalize even for unseen
codewords. Unfortunately, the NN architecture considered here
is not able to achieve MAP performance if it is not trained on
the entire codebook. However, finding a network architecture
that generalizes best is topic of our current investigations.

In summary, we can distinguish two forms of generalization.
First, as described in Section III, the NN can generalize from
input channel values with a certain training SNR to input
channel values with arbitrary SNR. Second, the NN is able to
generalize from a subset Xp of codewords to an unseen subset
Xp. However, we observed that for larger NNs the capability
of the second form of generalization vanishes.

V. OUTLOOK AND CONCLUSION

For small block lengths, we achieved to decode random
codes as well as polar codes with MAP performance. But
learning is limited through exponential complexity as the
number of information bits in the codewords increases. The

For both polar and random
codes, it is possible to achieve
MAP performance.

The larger the net, the less train-
ing epochs are necessary.

In general, the larger the number
of layers and neurons, the larger
is the expressive power or capac-
ity of the NN
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Influence of the number of epochs Mep on the BER

Polar Code[3][T. Gruber 2017]
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(a) 16 bit-length Polar Code (r = 0.5)
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Fig. 7: BLER for a 128-64-32 NN trained on Xp with
Mep = 218 learning epochs. Solid and dashed lines show the
performance on Xp on X , respectively.

very surprising result is that the NN is able to general-
ize for structured codes, which gives hope that decoding
algorithms can be learned. State-of-the-art polar decoding
currently suffers from high decoding complexity, a lack of
possible parallelization and, thus, critical decoding latency.
NND inherently describes a highly parallelizable structure,
enabling one-shot decoding. This renders deep learning-based
decoding a promising alternative channel decoding approach
as it avoids sequential algorithms. Future investigations will be
based on the exploration of regularization techniques as well
as recurrent and memory-augmented neural networks, which
are known to be Turing complete [23] and have recently shown
remarkable performance in algorithm learning.
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Fig. 7: BLER for a 128-64-32 NN trained on Xp with
Mep = 218 learning epochs. Solid and dashed lines show the
performance on Xp on X , respectively.

very surprising result is that the NN is able to general-
ize for structured codes, which gives hope that decoding
algorithms can be learned. State-of-the-art polar decoding
currently suffers from high decoding complexity, a lack of
possible parallelization and, thus, critical decoding latency.
NND inherently describes a highly parallelizable structure,
enabling one-shot decoding. This renders deep learning-based
decoding a promising alternative channel decoding approach
as it avoids sequential algorithms. Future investigations will be
based on the exploration of regularization techniques as well
as recurrent and memory-augmented neural networks, which
are known to be Turing complete [23] and have recently shown
remarkable performance in algorithm learning.

REFERENCES

[1] X.-A. Wang and S. B. Wicker, “An artificial neural net Viterbi decoder,”
IEEE Trans. Commun., vol. 44, no. 2, pp. 165–171, Feb. 1996.

[2] W. S. McCulloch and W. Pitts, “A logical calculus of the ideas immanent
in nervous activity,” The bulletin of mathematical biophysics, vol. 5,
no. 4, pp. 115–133, 1943.

[3] D. E. Rumelhart, G. E. Hinton, and R. J. Williams, “Parallel distributed
processing: Explorations in the microstructure of cognition, vol. 1.”
Cambridge, MA, USA: MIT Press, 1986, pp. 318–362.

0 10 20 30 40 50
0

0.5

1

Codeword index i of X80.

B
L

E
R

Random Code
Polar Code

Fig. 8: Single-word BLER for xi ∈ X80 at Eb/N0 = 4.16 dB
and Mep = 218 learning epochs.

[4] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard,
W. Hubbard, and L. D. Jackel, “Backpropagation applied to handwritten
zip code recognition,” Neural Computation, vol. 1, no. 4, pp. 541–551,
Dec. 1989.

[5] J. Hopfield, “Neural networks and physical systems with emergent
collective computational abilities,” Proc. Nat. Acad. Sci., vol. 79, pp.
2554–2558, 1982.

[6] J. Bruck and M. Blaum, “Neural networks, error-correcting codes, and
polynomials over the binary n-cube,” IEEE Trans. Inform. Theory,
vol. 35, no. 5, pp. 976–987, Sept. 1989.

[7] G. Zeng, D. Hush, and N. Ahmed, “An application of neural net in
decoding error-correcting codes,” in IEEE Int. Symp. on Circuits and
Systems, vol. 2, May 1989, pp. 782–785.

[8] W. R. Caid and R. W. Means, “Neural network error correcting decoders
for block and convolutional codes,” in Proc. IEEE Globecom Conf.,
vol. 2, Dec. 1990, pp. 1028–1031.

[9] A. D. Stefano, O. Mirabella, G. D. Cataldo, and G. Palumbo, “On the
use of neural networks for Hamming coding,” in IEEE Int. Symp. on
Circuits and Systems, vol. 3, June 1991, pp. 1601–1604.

[10] L. G. Tallini and P. Cull, “Neural nets for decoding error-correcting
codes,” in Proc. IEEE Tech. Applicat. Conf. and Workshops Northcon95,
Oct. 1995, pp. 89–.

[11] A. Hamalainen and J. Henriksson, “A recurrent neural decoder for
convolutional codes,” in Proc. IEEE Int. Conf. on Commun. (ICC), vol. 2,
1999, pp. 1305–1309.

[12] H. Abdelbaki, E. Gelenbe, and S. E. El-Khamy, “Random neural network
decoder for error correcting codes,” in Int. Joint Conf. on Neural
Networks, vol. 5, 1999, pp. 3241–3245.

[13] J.-L. Wu, Y.-H. Tseng, and Y.-M. Huang, “Neural network decoders for
linear block codes,” Int. Journ. of Computational Engineering Science,
vol. 3, no. 3, pp. 235–255, 2002.

[14] G. E. Hinton, S. Osindero, and Y.-W. Teh, “A fast learning algorithm for
deep belief nets,” Neural Computation, vol. 18, no. 7, pp. 1527–1554,
July 2006.

[15] E. Nachmani, Y. Be’ery, and D. Burshtein, “Learning to decode
linear codes using deep learning,” CoRR, 2016. [Online]. Available:
http://arxiv.org/abs/1607.04793

[16] I. Goodfellow, Y. Bengio, and A. Courville, “Deep Learning,”
2016, book in preparation for MIT Press. [Online]. Available:
http://www.deeplearningbook.org

[17] K. Hornik, M. Stinchcombe, and H. White, “Multilayer feedforward
networks are universal approximators,” Neural Networks, vol. 2, no. 5,
pp. 359–366, 1989.

[18] M. Jaderberg, K. Simonyan, A. Zisserman et al., “Spatial transformer
networks,” in Advances in Neural Information Processing Systems, 2015,
pp. 2017–2025.

[19] E. Arikan, “Channel polarization: A method for constructing capacity-
achieving codes for symmetric binary-input memoryless channels,” IEEE
Trans. Inform. Theory, vol. 55, no. 7, pp. 3051 –3073, 2009.

[20] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, “Algorithms
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BLER for a 128-64-32 NN trained on Xp with χp = 218 learning epochs[3][T. Gruber 2017] .
Solid and dashed lines show the performance on χ̃p on χ, respectively.

While for polar codes the NN is able to decode codewords that were not seen during training,
the NN cannot decode any unseen codeword for random codes.

Kai Niu (BUPT) Learning to Decode October 11, 2017 65 / 76



General Remarks

For small block lengths, neural network achieved to decode random
codes as well as polar codes with MAP performance.

Learning to decode is limited through exponential complexity as the
number of information bits in the codewords increases.

The neural network is able to generalize to codewords that it has never
seen during training for structured, but not for random codes.

The neural network is able to generalize for structured codes, which
means decoding algorithms can be learned.
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Summary

Theoretical contribution

Neural network decoder inherently describes a highly parallelizable
structure, enabling one-shot decoding. This renders deep learning-
based decoding a promising alternative channel decoding approach as
it avoids sequential algorithms.

Nueral network may generalize to structured codewords that it has
never seen during training.

Learning to decode

The Neural network is able to decode the channel codes base on a small
training set.

The neural network decoder can be generalized from a small training
set to the whole codeword net.

The neural network decoder can be generalized between different type
channel codes.
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Summary

Disadvantages of learning to decode

Neural network depends on structured codewords. For random code,
it shows an awful performance.

Neural network needs to process training with a lot of training sample,
which lead to extra overload.

The training complexity of deep learning-based channel decoders scales
exponentially with the codebook size and therefore with the number of
information bits.

Learning to decode is currently only feasible for very short block lengths.
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The End, Thanks!
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